	LMC835 Digital Controlled Graphic Equalizer General Description The LMC835 is a monolithic, digitally-controlled graphic equalizer CMOS LSI for Hi-Fi audio. The LMC835 consists of a Logic section and a Signal Path section made of analog switches and thin-film silicon-chromium resistor networks. The LMC835 is used with external resonator circuits to make a stereo equalizer with seven bands, $\pm 12 \mathrm{~dB}$ or ± 6 dB gain range and 25 steps each. Only three digital inputs are needed to control the equalization. The LMC835 makes it easy to build a $\mu \mathrm{P}$-controlled equalizer. The signal path is designed for very low noise and distortion, resulting in very high performance, compatible with PCM audio. Features - No volume controls required - Three-wire interface - 14 bands, 25 steps each - $\pm 12 \mathrm{~dB}$ or $\pm 6 \mathrm{~dB}$ gain ranges - Low noise and distortion - TTL, CMOS logic compatible Applications - Hi-Fi equalizer - Receiver - Car stereo - Musical instrument - Tape equalization - Mixer - Volume controller
	Connection Diagrams Dual-In-Line Package Molded Chip Carrier Package Top View

Electrical Characteristics (Note 2) $V_{D D}=7.5 \mathrm{~V}, \mathrm{~V}_{S S}=-7.5 \mathrm{~V}, \mathrm{D} . \mathrm{GND}=\mathrm{A} . \mathrm{GND}=0 \mathrm{~V}$
signal path section

Symbol	Parameter	Test Conditions	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	Unit (Limit)
$\mathrm{E}_{\text {A }}$	Gain Error	$\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB} @ \pm 12 \mathrm{~dB}$ Range $\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB} @ \pm 6 \mathrm{~dB}$ Range $\mathrm{A}_{\mathrm{V}}= \pm 1 \mathrm{~dB} @ \pm \mathrm{dB}$ Range ($\mathrm{R}_{5 \mathrm{~b}}$ or $\mathrm{R}_{5 c}$ is ON) $A_{V}= \pm 2 \mathrm{~dB} @ \pm 12 \mathrm{~dB}$ Range ($\mathrm{R}_{4 \mathrm{~b}}$ or $\mathrm{R}_{4 \mathrm{c}}$ is ON) $A_{V}= \pm 3 \mathrm{~dB} @ \pm 12 \mathrm{~dB}$ Range ($\mathrm{R}_{3 \mathrm{~b}}$ or $\mathrm{R}_{3 \mathrm{c}}$ is ON) $A_{V}= \pm 4 \mathrm{~dB} @ \pm 12 \mathrm{~dB}$ Range ($R_{2 b}$ or $R_{2 c}$ is ON) $A_{V}= \pm 5 \mathrm{~dB} @ \pm 12 \mathrm{~dB}$ Range ($\mathrm{R}_{1 \mathrm{~b}}$ or $\mathrm{R}_{1 c}$ is ON) $A_{V}= \pm 9 \mathrm{~dB} @ \pm 12 \mathrm{~dB}$ Range ($\mathrm{R}_{0 \mathrm{~b}}$ or $\mathrm{R}_{0 \mathrm{c}}$ is ON)	0.1 0.2	$\begin{gathered} \hline 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \\ 1 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.7 \\ \\ 1.3 \end{gathered}$	dB (Max) dB (Max)
THD	Total Harmonic Distortion		$\begin{gathered} \hline 0.0015 \\ \\ 0.01 \\ 0.1 \\ 0.01 \\ 0.1 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & \\ & 0.1 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{gathered} \% \\ \text { \% (Max) } \\ \% \text { (Max) } \\ \text { \% (Max) } \\ \% \text { (Max) } \end{gathered}$
$\mathrm{V}_{\mathrm{O} \text { Max }}$	Maximum Output Voltage	$\begin{gathered} \mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB} @ \pm 12 \mathrm{~dB} \text { Range } \\ \mathrm{THD}<1 \%, \mathrm{f}=1 \mathrm{kHz} \\ \hline \end{gathered}$	5.5	5.1	5	$\mathrm{V}_{\text {rms }}$ (Min)
S/N	Signal to Noise Ratio	$\begin{aligned} & A_{V}=0 \mathrm{~dB} @ \pm 12 \mathrm{~dB} \text { Range } \\ & V_{\text {ref }}=1 \mathrm{~V}_{\text {rms }} \\ & A_{V}=12 \mathrm{~dB} @ \pm 12 \mathrm{~dB} \text { Range } \\ & V_{\text {ref }}=1 V_{r m s} \\ & A_{V}=-12 \mathrm{~dB} @ \pm 12 \mathrm{~dB} \text { Range } \\ & V_{\text {ref }}=1 \mathrm{~V}_{\text {rms }} \end{aligned}$	$\begin{aligned} & 114 \\ & 106 \\ & 116 \end{aligned}$			dB dB dB
l LEAK	Leakage Current	$\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB}$ @ $\pm 12 \mathrm{~dB}$ Range (All internal switches are OFF) Pin $2+3$, Pin 26 Pin $5 \sim$ Pin 11, Pin $18 \sim$ Pin 24		$\begin{gathered} 500 \\ 50 \\ \hline \end{gathered}$		nA (Max) nA (Max)

Note 2; Boldface numbers apply at temperature extremes. All other numbers apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}, \mathrm{D} . \mathrm{GND}=\mathrm{A} . \mathrm{GND}=0 \mathrm{~V}$ as shown in the test circuit, Figures 3 and 4.
Note 3: Guaranteed and 100\% production tested.
Note 4: Guaranteed (but not 100% production tested) over the operating temperature range. These limits are not used to calculate outgoing quality levels.
Timing Diagrams

Note: To change the gain of the presently selected band, it is not necessary to send DATA 1 (Band Selection) each time.

Truth Tables

DATA I (Band Selection)							
D7	D6	D5	D4	D3	D2	D1	D0
H	X	L	L	L	L	L	L
H	X	L	L	L	L	L	H
H	x	L	L	L	L	H	L
H	x	L	L	L	L	H	H
H	x	L	L	L	H	L	L
H	x	L	L	L	H	L	H
H	x	L	L	L	H	H	L
H	x	L	L	L	H	H	H
H	x	L	L	H	L	L	L
H	x	L	L	H	L	L	H
H	x	L	L	H	L	H	L
H	x	L	L	H	L	H	H
H	x	L	L	H	H	,	L
H	x	L	L	H	H	L	H
H	x	L	L	H	H	H	L
H	x	L	L	H	H	H	H
H	x	L	H		Valid Bi	ry Inpu	
H	x	H	L		Valid Bi	ry Inpu	
H	x	H	H		Valid Bi	ry Inpu	
$\begin{aligned} & \uparrow \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \hline \text { (3) } \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \hline \end{aligned}$	\leftarrow	Band	Code	\rightarrow

(Ch A: Band 1~7, Ch B: Band 8~14)
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, No Band Selection
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 1
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 2
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 3
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 4
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 5 Ch A $\pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 6
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 7 Ch A $\pm 12 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, Band 8 Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 9 Ch A $\pm 12 \mathrm{~dB}$ Range, Ch $\mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 10
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 11 Ch A $\pm 12 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, Band 12
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 13
Ch A $\pm 12 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, Band 14
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 12 \mathrm{~dB}$ Range, No Band Selection
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 6 \mathrm{~dB}$ Range, Band $1 \sim 14$
Ch $A \pm 6 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 12 \mathrm{~dB}$ Range, Band $1 \sim 14$
Ch $A \pm 6 \mathrm{~dB}$ Range, Ch $\mathrm{B} \pm 6 \mathrm{~dB}$ Range, Band $1 \sim 14$
(1) DATA 1
(2) Don't Care
(3) $\mathrm{Ch} A \pm 6 \mathrm{~dB} / \pm 12 \mathrm{~dB}$ Range
(4) Ch $\mathrm{B} \pm 6 \mathrm{~dB} / \pm 12 \mathrm{~dB}$ Range

This is the gain if the $\pm 12 \mathrm{~dB}$ range is selected by DATA I. If the $\pm 6 \mathrm{~dB}$ range is selected, then the values shown must be approximately halved. See the characteristics curves for more exact data.

(5) DATA II
(6) Boost/Cut

Test Circuits

FIGURE 3. Test Circuit for AC Measurement

Test Circuits (Continued)

FIGURE 5. I to V Converter

TL/H/6753-8
FIGURE 6. Simple Word Generator

Typical Performance Characteristics

TL/H/6753-9

Typical Performance Characteristics (Continued)

Typical Applications

FIGURE 7. Stereo 7-Band Equalizer

TABLE I: Tuned Circuit Elements

$\mathbf{Q}_{\mathbf{0}}=\mathbf{3 . 5}, \mathbf{Q}_{\mathbf{1 2 d B}}=\mathbf{1 . 0 5}$					
$\mathbf{Z 1}$	$\mathbf{f}_{\mathbf{0}}(\mathbf{H z})$	$\mathbf{C}_{\mathbf{O}}(\mathbf{F})$	$\mathbf{C}_{\mathbf{L}}(\mathbf{F})$	$\mathbf{R}_{\mathbf{L}}(\Omega)$	$\mathbf{R}_{\mathbf{O}}(\Omega)$
Z1	63	1μ	0.1μ	100 k	680
Z2	160	0.47μ	0.033μ	100 k	680
Z3	400	0.15μ	0.015μ	100 k	680
Z4	1 k	0.068μ	0.0068μ	82 k	680
Z5	2.5 k	0.022μ	0.0033μ	82 k	680
Z6	6.3 k	0.01μ	0.0015μ	62 k	680
Z7	16 k	0.0047μ	680 p	47 k	680

Typical Applications (Continued)

Performance Characteristics (Circuit of Figure 7)

TL/H/6753-13

TL/H/6753-14

Typical Applications (Continued)
TABLE II. Tuned Circuit Elements

$\mathbf{Q}_{\mathbf{0}}=\mathbf{4 . 7}, \mathbf{Q}_{\mathbf{1 2} \mathbf{~ d B}}=\mathbf{1 . 4}$					
	$\mathbf{f}_{\mathbf{0}} \mathbf{(H z)}$	$\mathbf{C}_{\mathbf{0}} \mathbf{(F)}$	$\mathbf{C}_{\mathbf{L}} \mathbf{(F)}$	$\mathbf{R}_{\mathbf{L}}(\Omega)$	$\mathbf{R}_{\mathbf{O}}(\Omega)$
Z1	16	3.3μ	0.47μ	100 k	680
Z2	31.5	15μ	0.22μ	110 k	680
Z3	63	1μ	0.1μ	100 k	680
Z4	125	0.39μ	0.068μ	91 k	680
Z5	250	0.22μ	0.033μ	82 k	680
Z6	500	0.1μ	0.015μ	100 k	680
Z7	1 k	0.047μ	0.01μ	82 k	680
Z8	2 k	0.022μ	0.0047μ	91 k	680
Z9	4 k	0.01μ	0.0022μ	110 k	680
Z10	8 k	0.0068μ	0.001μ	82 k	680
Z11	16 k	0.0033μ	680 p	62 k	680
Z12	32 k	0.0015μ	470 p	68 k	510

(
FIGURE 10. Tuned Circuit for 12-Band Equalizer (Figure 9)

Performance Characteristics (Circuit of Figure 9)

Typical Applications (Continued)

TL/H/6753-18
FIGURE 12. Stereo 7-Input/1-Output Mixers (THD is not as low as equalizer circuit)

FIGURE 13. Stereo Volume Control, Very Low THD

FIGURE 14. LMC835-COP404L CPU Interface

Typical Applications (Continued)

Sample Subroutine Program for Figure 14, LMC835-COP404L CPU Interface

HEX				
CODE	LABEL	MNEMONICS		COMMENTS
3 F	LMC835:	LBI	3 F	;POINT TO RAMADDRESS 3F
05	SEND	LD		;RAMDATA TOA
22		SC		; SET CARRY
335F		OGI		;SET PORT G= llll, OPEN THE AND GATES
4F		XAS		;SWAP A AND SIO, CLOCK START
05		LD		;RAMDATA TO A , MAKE SURE A = DATA
07		XDS		;SWAP A AND RAMDATA, RAMADDRESS=RAMADDRESS-1
05		LD		;RAMDATA TOA
4F		XAS		;SWAP A AND SIO
05		LD		;RAMDATA TO A, MAKE SURE A=NEWDATA
07		XDS		;SWAP A AND RAMDATA, RAMADDRESS=RAMADDRESS-1
32		RC		;RESET CARRY
4 F		XAS		;SWAP A AND SIO, CLOCK STOP
335D		OGJ	13	;SET PORT G=1101, MAKE STROBE LOW
335B		OGI	11	;SET PORT G=1011, MAKE STROBE HIGH, CLOSE THE
				GATES
4E		CBA		;BD T0 A
43		AISC	3	;RAMADDRESS $<3 C$ THEN RETURN
48		RET		
80		JP	SEND	
	ESS			
3 C	DATA	;GAIN	D4-D7	
3D	DATA	;GAIN	D0-D3	
3E	DATA	;BAND	D4-D7	
3F	DATA	;BAND	D0-D3	

Application Hints

SWITCHING NOISE

The LMC835 uses CMOS analog switches that have small leakages (less than 50 nA). When a band is selected for flat gain, all the switches in that band are open and the resonator circuit is not connected to the LMC835 resistor network. It is only in the flat mode that the small leakage currents can cause problems. The input to the resonator circuit is usually a capacitor and the leakage currents will slowly charge up this capacitor to a large voltage if there is no resistive path to limit it. When the band is set to any value other than flat, the charge on the capacitor will be discharged by the resistor network and there will be a transient at the output. To limit the size of this transient, R LEAK is necessary.

HOW TO AVOID SWITCHING NOISE DUE TO LEAKAGE

 CURRENT (Refer to Figures 7 and 8)To avoid switching noise due to leakage currents when changing the gain, it is recommended to put $R_{\text {LEAK }}=100$ $\mathrm{k} \Omega$ between Pin 3 and Pin 5-11 each, Pin 26 and Pin 1224 each. The resistor limits the voltage that the capacitor can charge to, with minimal effects on the equalization. The frequency response change due to $\mathrm{R}_{\text {LEAK }}$ are shown in Figure 15. The gain error is only 0.2 dB and Q error is only 5% at 12 dB boost or cut.

SIMPLE WORD GENERATOR (Figure 6)

Circuit operation revolves around an MM74HC165 parallel-in/serial-out shift register. Data bits D0 through D7 are applied to the parallel of the MM74HC165 from 8 toggle switches. The bits are shifted out to the DATA input of the LMC835 in sync with the clock. When all data bits have been loaded, CLOCK is inhibited and a STROBE pulse is generated: this sequence is initiated by a START pulse.

LMC835-COP404L CPU INTERFACE (Refer to Figure 14)
The diagram shows AND gates between the COP and the LMC835. These permit G2 to inhibit the CLOCK and DATA lines (SK and SO) during a STROBE (G1) pulse. This function may also be implemented in software. As shown in Figure 2, the data groups are shifted in D0 first. Data is loaded on positive clock edges.

POWER SUPPLIES

These applications show LM317/337 regulators for the $\pm 7.5 \mathrm{~V}$ supplies for the LMC835. Since the latter draws only 5 mA max., 1 k series dropping resistors from the $\pm 15 \mathrm{~V}$ op amp supply and a pair of 7.5 V zeners and bypass caps will also suffice.

Application Hints (Continued)

FIGURE 15. Effect of RLEAK

REDUCING EXTERNAL COMPONENTS

The typical application shown in Figure 7 is switching noise free. The DC-coupled circuit in Figure 16 is also switching noise free, except at $12 \mathrm{~dB} / 6 \mathrm{~dB}$ switch turn ON/OFF. This switching noise is caused by the $\mathrm{I}_{\text {bias }}$ and $\mathrm{V}_{\text {offset }}$ of the op

TL/H/6753-23
FIGURE 16. Reducing External Components

LMC835 Digital Controlled Graphic Equalizer

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240	National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

