

Parallel RTC With CPU Supervisor

Features

- Real-Time Clock counts seconds through years in BCD format
- On-chip battery-backup switchover circuit with nonvolatile control for external SRAM
- ► Less than 500nA of clock operation current in backup mode
- Microprocessor reset valid to V_{CC} = V_{SS}
- Independent watchdog timer with a programmable time-out period
- Power-fail interrupt warning
- Programmable clock alarm interrupt active in battery-backup mode
- ► Programmable periodic interrupt
- ► Battery-low warning

General Description

The bq4845 Real-Time Clock is a low-power microprocessor peripheral that integrates a time-of-day clock, a 100-year calendar, and a CPU supervisor in a 28-pin SOIC or DIP. The bq4845 is ideal for fax machines, copiers, industrial control systems, point-of-sale terminals, data loggers, and computers.

The bq4845 provides direct connections for a 32.768KHz quartz crystal and a 3V backup battery. Through the use of the conditional chip enable output (\overline{CE}_{OUT}) and battery voltage output (V_{OUT}) pins, the bq4845 can write-protect and make nonvolatile external SRAMs. The backup cell powers the real-time clock and maintains SRAM information in the absence of system voltage.

The bq4845 contains a temperaturecompensated reference and comparator circuit that monitors the status of its voltage supply. When the bq4845 detects an out-of-tolerance condition, it generates an interrupt warning and subsequently a microprocessor reset. The reset stays active for 200ms after V_{CC} rises within tolerance, to allow for power supply and processor stabilization.

The bq4845 also has a built-in watchdog timer to monitor processor operation. If the microprocessor does not toggle the watchdog input (WDI) within the programmed time-out period, the bq4845 asserts WDO and RST. WDI unconnected disables the watchdog timer.

The bq4845 can generate other interrupts based on a clock alarm condition or a periodic setting. The alarm interrupt can be set to occur from once per second to once per month. The alarm can be made active in the battery-backup mode to serve as a system wake-up call. For interrupts at a rate beyond once per second, the periodic interrupt can be programmed with periods of 30.5µs to 500ms.

Pin Connections

Vоит 🗆		28	
Х1 С	2	27	
X ₂	3	26	
WDO C	4	25	
INT C	5	24	占 вс
RST [6	23	b wdi
A3 🗆	7	22	
A ₂ [8	21	
A1 🗆	9	20	⊐ v _{ss}
A ₀ [10	19	
DQ0 [11	18	
DQ1 [12	17	DQ5
DQ ₂	13	16	DQ4
V _{SS} 🗆	14	15	DQ3
L			1
	28-DIP or S	SOIC	
			PN484501.eps

Pin Names

A0-A3	Clock/control address inputs	BC	Backup battery input
DO ₀ –DO ₇	Data inputs/outputs	V _{OUT}	Back-up battery output
WE	Write enable	ĪNT	Interrupt output
ŌĒ	Output enable	RST	Microprocessor reset
\overline{CS}	Chip select input	WDI	Watchdog input
\overline{CE}_{IN}	External RAM chip enable	WDO	Watchdog output
CEOUT	Conditional RAM chip	V _{CC}	+5V supply
	enable	V _{SS}	Ground
X1-X2	Crystal inputs		

Functional Description

Figure 1 is a block diagram of the bq4845. The following sections describe the bq4845 functional operation including clock interface, data-retention modes, power-on reset timing, watchdog timer activation, and interrupt generation.

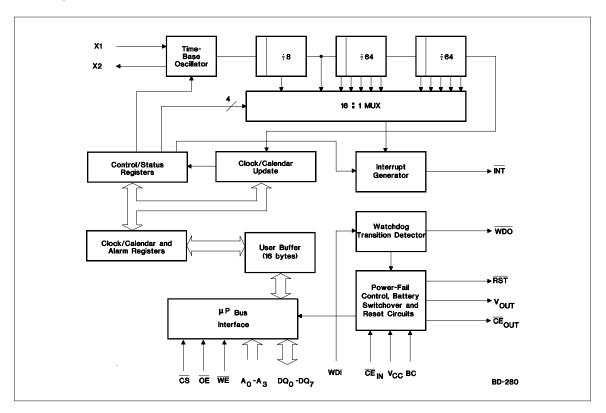


Figure 1. Block Diagram

Truth Table

V _{cc}	CS	ŌĒ	WE	CEOUT	V _{OUT}	Mode	DQ	Power
< V _{CC} (max.)	V_{IH}	Х	Х	\overline{CE}_{IN}	V _{OUT1}	Deselect	High Z	Standby
	V _{IL}	Х	VIL	\overline{CE}_{IN}	V _{OUT1}	Write	D _{IN}	Active
> V _{CC} (min.)	V _{IL}	V_{IL}	V_{IH}	\overline{CE}_{IN}	V _{OUT1}	Read	D _{OUT}	Active
	VIL	VIH	VIH	\overline{CE}_{IN}	V _{OUT1}	Read	High Z	Active
$< V_{PFD}$ (min.) $> V_{SO}$	Х	Х	Х	Voh	Vout1	Deselect	High Z	CMOS standby
$\leq V_{SO}$	Х	Х	Х	VOHB	Vout2	Deselect	High Z	Battery-backup mode

Pin Descriptions

X1-X2 Crystal inputs

X1–X2 are a direct connection for a 32.768kHZ, 6pF crystal.

RST Reset output

 $\label{eq:RST} \begin{array}{l} \hline RST & goes & low & whenever & V_{CC} & falls & below & the \\ power & fail & threshold. \hline RST & will & remain & low & for \\ 200ms & typical & after & V_{CC} & crosses & the & threshold \\ on & power-up. & RST & also & goes & low & whenever & a \\ watchdog & timeout & occurs. & \hline RST & is & an & open- \\ drain & output. & \end{array}$

INT Interrupt output

INT goes low when a power fail, periodic, or alarm condition occurs. INT is an open-drain output.

WDI Watchdog input

WDI is a three-level input. If WDI remains either high or low for longer than the watchdog time-out period (1.5 seconds default), WDO goes low. WDO remains low until the next transition at WDI. Leaving WDI unconnected disables the watchdog function. WDI connects to an internal voltage divider between V_{OUT} and V_{SS}, which sets it to mid-supply when left unconnected.

WDO Watchdog output

WDO goes low if WDI remains either high or low longer than the watchdog time-out period. WDO returns high on the next transition at WDI. WDO remains high if WDI is unconnected.

A₀-A₃ Clock address inputs

 A_0-A_3 allow access to the 16 bytes of realtime clock and control registers. Vcc

DQ₀-DQ₇ Data input and output

 DQ_0-DQ_7 provide x8 data for real-time clock information. These pins connect to the memory data bus.

Ground

Vss

CS Chip select

OE Output enable

OE provides the read control for the RTC memory locations.

CEOUT Chip enable output

 \overline{CE}_{OUT} goes low only when \overline{CE}_{IN} is low and V_{CC} is above the power fail threshold. If \overline{CE}_{IN} is low, and power fail occurs, \overline{CE}_{OUT} stays low for 100 μ s or until \overline{CE}_{IN} goes high, whichever occurs first.

CEIN Chip enable input

 $\overline{\mbox{CE}_{\mbox{IN}}}$ is the input to the chip-enable gating circuit.

BC Backup battery input

BC should be connected to a 3V backup cell. A voltage within the V_{BC} range on the BC pin should be present upon power up to provide proper oscillator start-up.

Vout Output supply voltage

 V_{OUT} provides the higher of V_{CC} or $V_{BC}, \ switched \ internally, to supply external RAM.$

WE Write enable

WE provides the write control for the RTC memory locations.

Input supply voltage

+5V input

Address Map

The bq4845 provides 16 bytes of clock and control status registers. Table 1 is a map of the bq4845 registers, and Table 2 describes the register bits.

Clock Memory Interface

The bq4845 has the same interface for clock/calendar and control information as standard SRAM. To read and write to these locations, the user must put the bq4845 in the proper mode and meet the timing requirements.

Read Mode

The bq4845 is in read mode whenever \overline{OE} (Output enable) is low and \overline{CS} (chip select) is low. The unique address, specified by the 4 address inputs, defines which one of the 16 clock/calendar bytes is to be accessed. The bq4845 makes valid data available at the data I/O pins within t_{AA} (address access time). This occurs after the last address input signal is stable, and providing the \overline{CS} and \overline{OE} (output enable) access times are met. If the \overline{CS} and \overline{OE} access times are not met, valid data is available after the latter of chip select access time (t_{ACS}) or output enable access time (t_{OE}).

 \overline{CS} and \overline{OE} control the state of the eight three-state data I/O signals. If the outputs are activated before $t_{AA},$

Ad- dress (h)	D7	D6	D5	D4	D3	D2	D1	D0	12-Hour Range (h)	Register
0	0	10-s	econd d	igit		1-secon	ıd digit		00–59	Seconds
1	ALM1	ALM0 10-s	econd d	igit		1-secon	ıd digit		00–59	Seconds alarm
2	0	10-n	ninute d	igit		1-minu	te digit		00-59	Minutes
3	ALM1	ALM0	ninute d	iơit		1-minu	te digit		00–59	Minutes alarm
4	PM/AM	0		ır digit		1-hou	r digit		01–12 AM/ 81– 92 PM	Hours
5	ALM1 PM/AM	ALM0	10-hour digit		1-hour digit				01–12 AM/ 81–92 PM	Hours alarm
6	0	0	10-da	y digit		1-day	digit		01-31	Day
7	ALM1	ALM0	10-da	y digit		1-day	digit		01-31	Day alarm
8	0		0		0	Day-o	of-week di	igit	01-07	Day-of-week
9	0	0	0	10 mo.		1-mont	h digit		01-12	Month
Α		10-year	digit			1-year	digit		00–99	Year
В	*	WD2	WD1	WD0	RS3	RS2	RS1	RS0		Programmable rates
С	*		*		AIE	PIE	PWRIE	ABE		Interrupt en- ables
D	*		*		AF	PF	PWRF	BVF		Flags
Е	*		*		UTI	STOP	24/12	DSE		Control
F	*	*	*	*	*	*	*	*		Unused

Table 1. bq4845 Clock and Control Register Map

 Notes:
 * = Unused bits; unwritable and read as 0.

 0 = should be set to 0 for valid time/calendar range.

 Clock calendar data in BCD. Automatic leap year adjustment.

 PM/AM = 1 for PM; PM/AM = 0 for AM.

 DSE = 1 enables daylight savings adjustment.

 24/12 = 1 enables 24-hour data representation; 24/12 = 0 enables 12-hour data representation.

 Day-of-Week coded as Sunday = 1 through Saturday = 7.

 BVF = 1 for valid battery.

 STOP = 1 turns the RTC on; STOP = 0 stops the RTC in back-up mode.

Bits	Description
24/12	24- or 12-hour representation
ABE	Alarm interrupt enable in battery-backup mode
AF	Alarm interrupt flag
AIE	Alarm interrupt enable
ALM0-ALM1	Alarm mask bits
BVF	Battery-valid flag
DSE	Daylight savings time enable
PF	Periodic interrupt flag
PIE	Periodic interrupt enable
PM/AM	PM or AM indication
PWRF	Power-fail interrupt flag
PWRIE	Power-fail interrupt enable
RS0-RS3	Periodic interrupt rate
STOP	Oscillator stop and start
UTI	Update transfer inhibit
WD0 - WD2	Watchdog time-out rate

Table 2. Clock and Control Register Bits

the data lines are driven to an indeterminate state until t_{AA} . If the address inputs are changed while \overline{CS} and \overline{OE} remain low, output data remains valid for t_{OH} (output data hold time), but goes indeterminate until the next address access.

Write Mode

The bq4845 is in write mode whenever \overline{WE} and \overline{CS} are active. The start of a write is referenced from the latter-occurring falling edge of \overline{WE} or \overline{CS} . A write is terminated by the earlier rising edge of \overline{WE} or \overline{CS} . The addresses must be held valid throughout the cycle. \overline{CS} or \overline{WE} must return high for a minimum of twR2 from \overline{CS} or twR1 from \overline{WE} prior to the initiation of another read or write cycle.

Data-in must be valid t_{DW} prior to the end of write and remain valid for t_{DH1} or t_{DH2} afterward. OE should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{CS} and \overline{OE} , a low on WE disables the outputs t_{WZ} after WE falls.

Aug. 1995

Reading the Clock

Once every second, the user-accessible clock/calendar locations are updated simultaneously from the internal real time counters. To prevent reading data in transition, updates to the bq4845 clock registers should be halted. Updating is halted by setting the update transfer inhibit (UTI) bit D3 of the control register E. As long as the UTI bit is 1, updates to user-accessible clock locations are inhibited. Once the frozen clock information is retrieved by reading the appropriate clock memory locations, the UTI bit should be reset to 0 in order to allow updates to occur from the internal counters. Because the internal counters are not halted by setting the UTI bit, reading the clock locations has no effect on clock accuracy. Once the UTI bit is reset to 0, the internal registers update within one second the user-accessible registers with the correct time. A halt command issued during a clock update allows the update to occur before freezing the data.

Setting the Clock

The UTI bit must also be used to set the bq4845 clock. Once set, the locations can be written with the desired information in BCD format. Resetting the UTI bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the useraccessible registers to resume within one second.

Stopping and Starting the Clock Oscillator

The bq4845 clock can be programmed to turn off when the part goes into battery back-up mode by setting STOP to 0 prior to power down. If the board using the bq4845 is to spend a significant period of time in storage, the STOP bit can be used to preserve some battery capacity. STOP set to 1 keeps the clock running when V_{CC} drops below V_{SO}. With V_{CC} greater than V_{SO}, the bq4845 clock runs regardless of the state of STOP.

Power-Down/Power-Up Cycle

The bq4845 continuously monitors V_{CC} for out-oftolerance. During a power failure, when V_{CC} falls below V_{PFD} , the bq4845 write-protects the clock and storage registers. When V_{CC} is below V_{BC} (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When V_{CC} is above V_{BC} , the power source is V_{CC} . Write-protection continues for t_{CSR} time after V_{CC} rises above V_{PFD} .

An external CMOS static RAM is battery-backed using the V_{OUT} and chip enable output pins from the bq4845. As the voltage input V_{CC} slews down during a power failure, the chip enable output, \overline{CE}_{OUT} , is forced inactive independent of the chip enable input \overline{CE}_{IN} .

This activity unconditionally write-protects the external SRAM as V_{CC} falls below V_{PFD} . If a memory access is in progress to the external SRAM during power-fail detection, that memory cycle continues to completion before the memory is write-protected. If the memory cycle is not terminated within time t_{WPT}, the chip enable output is unconditionally driven high, write-protecting the controlled SRAM.

As the supply continues to fall past V_{PFD} , an internal switching device forces V_{OUT} to the external backup energy source. $\overrightarrow{CE}_{OUT}$ is held high by the V_{OUT} energy source.

During power-up, V_{OUT} is switched back to the 5V supply as V_{CC} rises above the backup cell input voltage sourcing V_{OUT} . $\overrightarrow{CE}_{OUT}$ is held inactive for time t_{CER} after the power supply has reached V_{PFD} , independent of the \overrightarrow{CE}_{IN} input, to allow for processor stabilization.

During power-valid operation, the \overline{CE}_{IN} input is passed through to the \overline{CE}_{OUT} output with a propagation delay of less than 12ns.

Figure 2 shows the hardware hookup for the external RAM, battery, and crystal.

A primary backup energy source input is provided on the bq4845. The BC input accepts a 3V primary battery, typically some type of lithium chemistry. Since the bq4845 provides for reverse battery charging protection, no diode or current limiting resistor is needed in series with the cell. To prevent battery drain when there is no valid data to retain, V_{OUT} and CE_{OUT} are internally isolated from BC by the initial connection of a battery. Following the first application of V_{CC} above V_{PFD}, this isolation is <u>broken</u>, and the backup cell provides power to V_{OUT} and CE_{OUT} for the external SRAM.

The crystal should be located as close to X1 and X2 as possible and meet the specifications in the Crystal Specification Table. With the specified crystal, the bq4845 RTC will be accurate to within one minute per month at room temperature. In the absence of a crystal, a 32.768 kHz waveform can be fed into X1 with X2 grounded.

Power-On Reset

<u>The</u> bq4845 provides a power-on reset, which pulls the RST pin low on power-down and remains low on powerup for t_{RST} after V_{CC} passes V_{PFD}. With valid battery voltage on BC, RST remains valid for V_{CC}= V_{SS}.

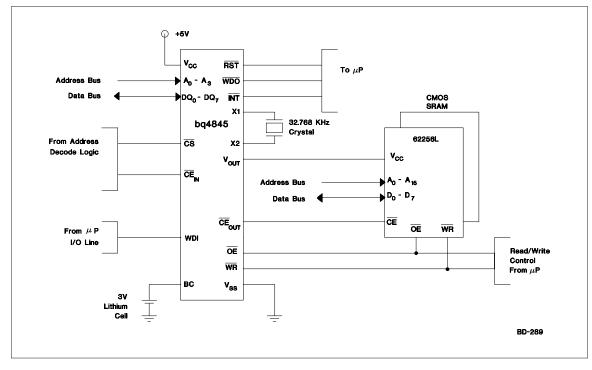
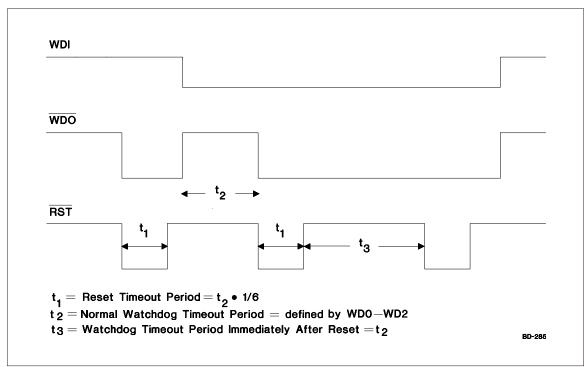


Figure 2. bq4845 Application Circuit

Watchdog Timer

The watchdog monitors microprocessor activity through the Watchdog input (WDI). To use the watchdog function, connect WDI to a bus line or a microprocessor I/O line. If WDI remains high or low for longer than the watchdog time-out period (1.5 seconds default), the bq4845 asserts WDO and $\overline{\text{RST}}$.

Watchdog Input


The bq4845 resets the watchdog timer if a change of state (high to low, low to high, or a minimum 100ns pulse) occurs at the Watchdog input (WDI) during the watchdog period. The watchdog time-out is set by WD0-WD2 in register B. The bq4845 maintains the watchdog time-out programming through power cycles. The default state (no valid battery power) of WD0-WD2 is 000 or 1.5s on power-up. Table 3 shows the programmable watchdog time-out rates. The watchdog time-out period immediately after a reset is equal to the programmed watchdog time-out.

To disable the watchdog function, leave WDI floating. An internal resistor network ($100k\Omega$ equivalent impedance

at WDI) biases WDI to approximately 1.6V. Internal comparators detect this level and disable the watchdog timer. When V_{CC} is below the power-fail threshold, the bq4845 disables the watchdog function and disconnects WDI from its internal resistor network, thus making it high impedance.

Watchdog Output

The Watchdog output (\overline{WDO}) remains high if there is a transition or pulse at WDI during the watchdog timeout <u>period</u>. The bq4845 disables the watchdog function and \overline{WDO} is a logic high when V_{CC} is below the power fail threshold, battery-backup mode is enabled, or WDI is an open circuit. In watchdog mode, if no transition occurs at WDI during the watchdog time-out period, the <u>bq4845</u> asserts RST for the reset time-out period t₁. WDO goes low and remains low until the next transition at WDI. If WDI is held high or low indefinitely, RST will generate pulses (t₁ seconds wide) every t₃ seconds. Figure 3 shows the watchdog timing.

Figure 3. Watchdog Time-out Period and Reset Active Time

Interrupts

The bq4845 allows three individually selected interrupt events to generate an interrupt request on the \overline{INT} pin. These three interrupt events are:

- The periodic interrupt, programmable to occur once every 30.5µs to 500ms
- The alarm interrupt, programmable to occur once per second to once per month
- The power-fail interrupt, which can be enabled to be asserted when the bq4845 detects a power failure

The periodic, alarm, and power-fail interrupts are enabled by an individual interrupt-enable bit in register C, the interrupts register. When an event occurs, its event flag bit in the flags register, register D, is set. If the corresponding event enable bit is also set, then an interrupt request is generated. Reading the flags register clears all flag bits and makes INT high impedance. To reset the flag register, the bq4845 addresses must be held stable at register D for at least 50ns to avoid inadvertent resets.

Periodic Interrupt

Bits RS3–RS0 in the interrupts register program the rate for the periodic interrupt. The user can interpret the interrupt in two ways: either by polling the flags register for PF assertion or by setting PIE so that INT goes active when the bq4845 sets the periodic flag. Reading the flags register resets the PF bit and returns INT to the high-impedance state. Table 4 shows the periodic rates.

Alarm Interrupt

Registers 1, 3, 5, and 7 program the real-time clock alarm. During each update cycle, the bq4845 compares the date, hours, minutes, and seconds in the clock regis-

ters with the corresponding alarm registers. If a match between all the corresponding bytes is found, the alarm flag AF in the flags register is set. If the alarm interrupt is <u>enabled</u> with AIE, an interrupt request is generated on INT. The alarm condition is cleared by a read to the flags register. ALM1 – ALM0 in the alarm registers, mask each alarm compare byte. An alarm byte is masked by setting ALM1 (D7) and ALM0 (D6) to 1. Alarm byte masking can be used to select the frequency of the alarm interrupt, according to Table 5.

The alarm interrupt can be made active while the bq4845 is in the battery-backup mode by setting ABE in the interrupts register. Normally, the \overline{INT} pin goes high-impedance during battery backup. With ABE set, however, \overline{INT} is driven low if an alarm condition occurs and the AIE bit is set. Because the AIE bit is reset during power-on reset updates only the flags register. The user can read the flags register during boot-up to determine if an alarm was generated during power-on reset.

Power-Fail Interrupt

When V_{CC} falls to the power-fail-detect point, the power-fail flag PWRF is set. If the <u>power</u>-fail interrupt enable bit (PWRIE) is also set, then <u>INT</u> is asserted low. The power-fail interrupt occurs t_{WPT} before the bq4845 generates a reset and deselects. The PWRIE bit is cleared on power-up.

Battery-Low Warning

The bq4845 checks the battery on power-up. When the battery voltage is approximately 2.1V, the battery-valid flag BVF in the flags register is set to a 0 indicating that clock and RAM data may be invalid.

WD2	WD1	WD0	Normal Watchdog Time-out Period (t ₂ , t ₃)	Reset Time-out Period (t ₁)
0	0	0	1.5s	0.25s
0	0	1	23.4375ms	3.9063ms
0	1	0	46.875ms	7.8125ms
0	1	1	93.75ms	15.625ms
1	0	0	187.5ms	31.25ms
1	0	1	375ms	62.5ms
1	1	0	750ms	125ms
1	1	1	3s	0.5s
L				Aug. 1995

Table 3. Watchdog Time-out Rates

	Registe	er B Bits		Periodic In	terrupt
RS3	RS2	RS1	RS0	Period	Units
0	0	0	0	None	
0	0	0	1	30.5175	μs
0	0	1	0	61.035	μs
0	0	1	1	122.070	μs
0	1	0	0	244.141	μs
0	1	0	1	488.281	μs
0	1	1	0	976.5625	μs
0	1	1	1	1.95315	ms
1	0	0	0	3.90625	ms
1	0	0	1	7.8125	ms
1	0	1	0	15.625	ms
1	0	1	1	31.25	ms
1	1	0	0	62.5	ms
1	1	0	1	125	ms
1	1	1	0	250	ms
1	1	1	1	500	ms

Table 4. Periodic Interrupt Rates

Table 5. Alarm Frequency (Alarm Bits D6 and D7 of Alarm Registers)

1h	3h	5h	7h	
ALM1•ALM0	ALM1•ALM0	ALM1•ALM0	ALM1•ALM0	Alarm Frequency
1	1	1	1	Once per second
0	1	1	1	Once per minute when seconds match
0	0	1	1	Once per hour when minutes, and seconds match
0	0	0	1	Once per day when hours, minutes, and seconds match
0	0	0	0	When date, hours, minutes, and seconds match

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on V_{CC} relative to V_{SS}	-0.3 to 7.0	V	
VT	DC voltage applied on any pin excluding V_{CC} relative to $V_{\rm SS}$	-0.3 to 7.0	V	$V_T\!\leq\!V_{CC}+0.3$
TOPR Operating temperature	Operating temperature	0 to +70	°C	Commercial
TOPK	Operating temperature	-40 to +85	°C	Industrial
T _{STG}	Storage temperature	-55 to +125	°C	
T _{BIAS}	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Absolute Maximum Ratings

Note: Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	bq4845Y
VCC	Supply voltage	4.75	5.0	5.5	v	bq4845
Vss	Supply voltage	0	0	0	v	
VIL	Input low voltage	-0.3	-	0.8	V	
VIH	Input high voltage	2.2	-	V _{CC} + 0.3	V	
V _{BC}	Backup cell voltage	2.3	-	4.0	V	

Note: Typical values indicate operation at $T_A = 25^{\circ}C$.

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I _{LI}	Input leakage current	-	-	± 1	μA	$V_{IN} = V_{SS}$ to V_{CC}
I _{LO}	Output leakage current	-	-	± 1	μΑ	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE}$ $= V_{IL}$
Voh	Output high voltage	2.4	-	-	V	I _{OH} = -2.0 mA
V _{OHB}	V _{OH.} BC Supply	V _{BC} - 0.3	-	-	V	$V_{BC} > V_{CC}$, $I_{OH} = -10 \mu A$
VOL	Output low voltage	-	-	0.4	V	$I_{OL} = 4.0 \text{ mA}$
I _{CC}	Operating supply current	-	12	25	mA	$\frac{Min.\ cycle,\ duty\ =\ 100\%,}{\overline{CS}\ =\ V_{IL},\ I_{I/O}\ =\ 0mA}$
I _{SB1}	Standby supply current	-	3	-	mA	$\overline{\text{CS}} = \text{V}_{\text{IH}}$
I _{SB2}	Standby supply current	-	1.5	-	mA	$\label{eq:cs} \begin{split} \overline{CS} &\geq V_{CC} - 0.2V, \\ 0V &\leq V_{IN} \leq \ 0.2V, \\ \text{or} \ V_{IN} &\geq V_{CC} - 0.2V \end{split}$
V _{SO}	Supply switch-over voltage	-	V _{BC}	-	V	
I _{CCB}	Battery operation current	-	0.3	0.5	μΑ	V_{BC} = 3V, $T_{\underline{A}}$ = 25°C, no load on V_{OUT} or \overline{CE}_{OUT}
X 7	Power-fail-detect voltage	4.55	4.62	4.75	V	bq4845
VPFD	Power-fail-detect voltage	4.30	4.37	4.5	V	bq4845Y
V _{OUT1}	V _{OUT} voltage	V _{CC} - 0.3V	-	-	V	I_{OUT} = 100mA, $V_{CC} > V_{BC}$
V _{OUT2}	V _{OUT} voltage	V _{BC} - 0.3V	-	-	V	I_{OUT} = 100 μ A, V_{CC} < V_{BC}
V _{RST}	RST output voltage	-	-	0.4V	-	$I_{RST} = 4mA$
VINT	INT output voltage	-	-	0.4V	-	$I_{INT} = 4mA$
V	WDO sutput volto se	-	-	0.4V	-	$I_{SINK} = 4mA$
V _{WDO}	WDO output voltage	2.4	-	-	-	$I_{SOURCE} = 2mA$
IWDIL	Watchdog input low current	-50	-10	-	μA	$0 < V_{WDI} < 0.8 \mathrm{V}$
I _{WDIH}	Watchdog input high current	-	20	50	μA	$2.2 < V_{WDI} < V_{CC}$

DC Electrical Characteristics (TA = TOPR, VCCmin \leq VCC \leq VCCmax)

Notes: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$. RST and \overline{INT} are open-drain outputs.

Crystal Specifications (DT-26 or Equivalent)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
fo	Oscillation frequency	-	32.768	-	kHz
CL	Load capacitance	-	6	-	pF
TP	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant	-	-	-0.042	ppm/°C
Q	Quality factor	40,000	70,000	-	
R ₁	Series resistance	-	-	45	KΩ
C ₀	Shunt capacitance	-	1.1	1.8	pF
C_0/C_1	Capacitance ratio	-	430	600	
DL	Drive level	-	-	1	μW
$\Delta f/f_O$	Aging (first year at 25°C)	-	1	-	ppm

Capacitance (T_A = 25°C, F = 1MHz, V_{CC} = 5.0V)

Symbol	Parameter Minim		Minimum Typical		Unit	Conditions	
C _{I/O}	Input/output capacitance	-	-	7	pF	Output voltage = 0V	
C _{IN}	Input capacitance	-	-	5	pF	Input voltage = 0V	

Note: These parameters are sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0V to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

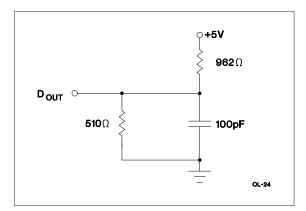


Figure 4. Output Load A

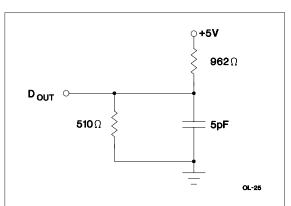
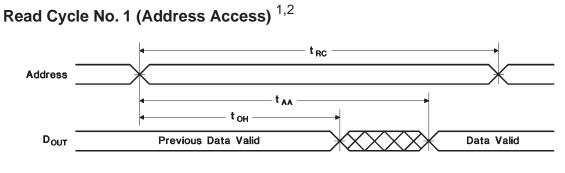


Figure 5. Output Load B

Read Cycle (TA = TOPR, VCCmin \leq VCC \leq VCCmax)

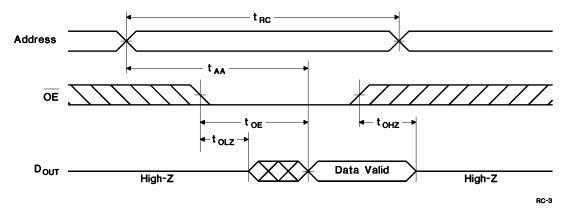

Symbol	Parameter	Min.	Max.	Unit	Conditions
t _{RC}	Read cycle time	70	-	ns	
t _{AA}	Address access time	-	70	ns	Output load A
t _{ACS}	Chip select access time	-	70	ns	Output load A
toE	Output enable to output valid	-	35	ns	Output load A
t _{CLZ}	Chip select to output in low Z	5	-	ns	Output load B
toLZ	Output enable to output in low Z	0	-	ns	Output load B
t _{CHZ}	Chip deselect to output in high Z	0	25	ns	Output load B
t _{OHZ}	Output disable to output in high Z	0	25	ns	Output load B
toH	Output hold from address change	10	-	ns	Output load A

Write Cycle (TA =TOPR, VCCmin \leq VCC \leq VCCmax)

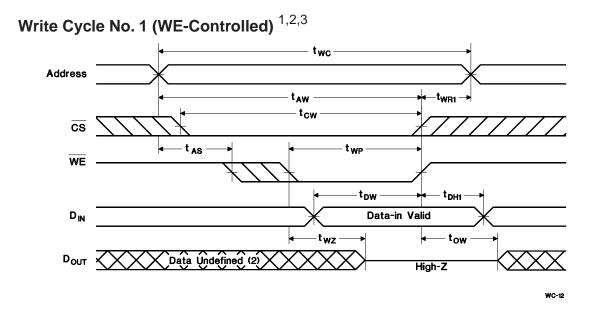
Symbol	Parameter	Min.	Max.	Unit	Conditions
twc	Write cycle time	70	-	ns	
t _{CW}	Chip select to end of write	65	-	ns	(1)
t _{AW}	Address valid to end of write	65	-	ns	(1)
t _{AS}	Address setup time	0	-	ns	Measured from address valid to beginning of write. (2)
t _{WP}	Write pulse width	55	-	ns	Measured from beginning of write to end of write. (1)
t _{WR1}	Write recovery time (write cycle 1)	5	-	ns	Measured from $\overline{\text{WE}}$ going high to end of write cycle. (3)
t _{WR2}	Write recovery time (write cycle 2)	15	-	ns	Measured from $\overline{\text{CS}}$ going high to end of write cycle. (3)
t _{DW}	Data valid to end of write	30	-	ns	Measured to first low-to-high transition of either $\overline{\text{CS}}$ or $\overline{\text{WE}}$.
t _{DH1}	Data hold time (write cycle 1)	0	-	ns	Measured from $\overline{\text{WE}}$ going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10	-	ns	Measured from \overline{CS} going high to end of write cycle. (4)
t _{WZ}	Write enabled to output in high Z	0	25	ns	I/O pins are in output state. (5)
tow	Output active from end of write	0	-	ns	I/O pins are in output state. (5)

Notes: 1. A write ends at the earlier transition of \overline{CS} going high and \overline{WE} going high.

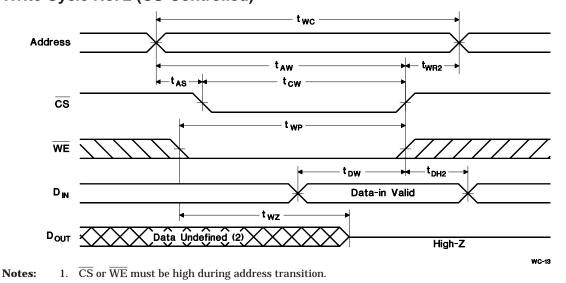
- 2. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low and \overline{WE} going low.
- 3. Either t_{WR1} or t_{WR2} must be met.
- 4. Either t_{DH1} or t_{DH2} must be met.
- 5. If $\overline{\text{CS}}$ goes low simultaneously with $\overline{\text{WE}}$ going low or after $\overline{\text{WE}}$ going low, the outputs remain in high-impedance state.


RC-1

Read Cycle No. 2 (CS Access) ^{1,3,4}


RC-36

Read Cycle No. 3 (OE Access) ^{1,5}



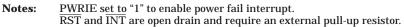
Notes: 1. \overline{WE} is held high for a read cycle.

- 2. Device is continuously selected: $\overline{CS} = \overline{OE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CS}}$ transition low.
- $4. \quad \overline{OE} = V_{IL}.$
- 5. Device is continuously selected: \overline{CS} = $V_{IL}.$

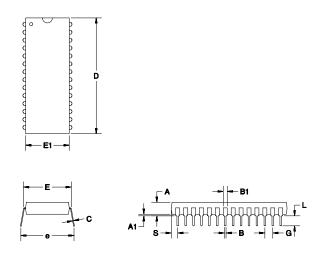
Write Cycle No. 2 (CS-Controlled) ^{1,2,3,4,5}

2. Because I/O may be active (\overline{OE} low) during this period, data input signals of opposite polarity to the outputs must not be applied.

- 3. If $\overline{\text{OE}}$ is high, the I/O pins remain in a state of high impedance.
- 4. Either t_{WR1} or t_{WR2} must be met.
- 5. Either t_{DH1} or t_{DH2} must be met.

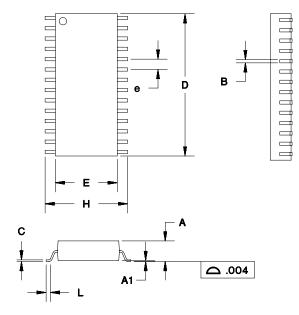

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
t _F	V _{CC} slew from 4.75 to 4.25V	300	-	-	μs	
t _{FS}	V_{CC} slew from 4.25 to V_{SO}	10	-	-	μs	
t _R	V _{CC} slew from V _{SO} to V _{PFD(MAX)}	100	-	-	μs	
t _{PF}	Interrupt delay from V _{PFD}	6	-	24	μs	
t _{WPT}	Write-protect time for external RAM	90	100	125	μs	Delay after V_{CC} slews down past V_{PFD} before SRAM is write-protected and \overline{RST} activated.
t _{CSR}	$\overline{\text{CS}}$ at V_{IH} after power-up	100	200	300	ms	Internal write-protection period after V_{CC} passes V_{PFD} on power-up.
t _{RST}	V_{PFD} to $\overline{\text{RST}}$ inactive	t _{CSR}	-	t _{CSR}	ms	Reset active time-out period
t _{CER}	Chip enable recovery time	t _{CSR}	-	t _{CSR}	ms	Time during which external SRAM is write-protected after $V_{\rm CC}$ passes $V_{\rm PFD}$ on power-up.
t _{CED}	Chip enable propagation delay to external SRAM	-	9	12	ns	Output load A

Power-Down/Power-Up Timing (TA = TOPR)


Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

28-Pin DIP (P)

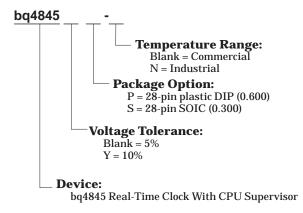


Dimension	Minimum	Maximum								
A	0.160	0.190								
A1	0.015	0.040								
В	0.015	0.022								
B1	0.045	0.065								
С	0.008	0.013								
D	1.440	1.480								
Е	0.600	0.625								
E1	0.530	0.570								
е	0.600	0.670								
G	0.090	0.110								
L	0.115	0.150								
S	0.070	0.090								

28-Pin DIP (P)

All dimensions are in inches.

28-Pin SOIC (S)



28-Pin SOIC	(S)
Dimension	Minimum
Δ	0.005

Dimension	Minimum	Maximum
Α	0.095	0.105
A1	0.004	0.012
В	0.013	0.020
С	0.008	0.013
D	0.700	0.715
E	0.290	0.305
e	0.045	0.055
Н	0.395	0.415
L	0.020	0.040

All dimensions are in inches.

Ordering Information

18-Jul-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ4845S-A4TR	NRND	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4845S -A4	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

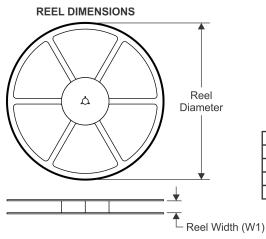
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

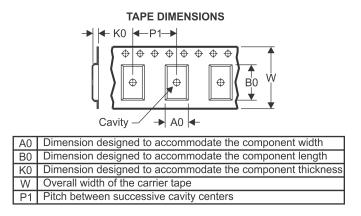
PACKAGE MATERIALS INFORMATION

www.ti.com

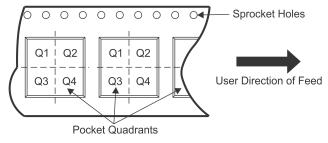
Texas Instruments

Pin1


Quadrant

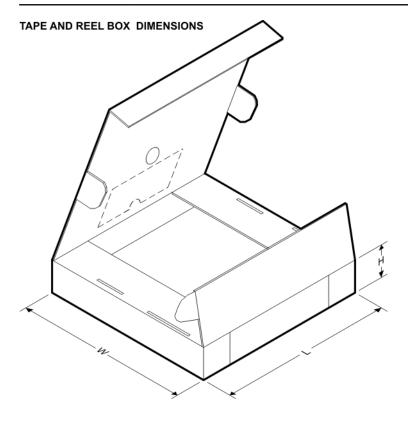

Q1

w (mm)


32.0

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal											
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	``'	B0 (mm)	K0 (mm)	P1 (mm)	(
BQ4845S-A4TR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

18-Jul-2018

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ4845S-A4TR	SOIC	DW	28	1000	367.0	367.0	55.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated